
An Implementation of Graph Isomorphism Testing

Jeremy G. Siek

December 9, 2001



2

0.1 Introduction

This paper documents the implementation of the isomorphism() function of the Boost
Graph Library. The implementation was by Jeremy Siek with algorithmic improve-
ments and test code from Douglas Gregor and Brian Osman. The isomorphism()

function answers the question, \are these two graphs equal?" By equal we mean the
two graphs have the same structure|the vertices and edges are connected in the same
way. The mathematical name for this kind of equality is isomorphism.

More precisely, an



0.2. BACKTRACKING SEARCH 3

As we will see later, a good ordering of the vertices is by DFS discover time. Let G1[k]
denote the subgraph of G1 induced by the �rst k vertices, with G1[0] being an empty
graph. We also consider the edges of G1 in a speci�c order. We always examine edges
in the current subgraph G1[k] �rst, that is, edges (u; v) where both u � k and v � k.
This ordering of edges can be acheived by sorting each edge (u; v) by lexicographical
comparison on the tuple hmax(u; v); u; vi. Figure 1 shows an example of a graph with



4

usually the case that i is equal to the new k, but when there is another DFS root r
with no in-edges or out-edges and if r < i then it will be the new k.

Case 2: i � k and j > k. i

http://www.sgi.com/tech/stl/AdaptableUnaryFunction.html


0.2. BACKTRACKING SEARCH 5



6

DFS Order, Starting with Lowest Multiplicity

For this implementation, we combine the above two heuristics in the following way.
To implement the \adjacent �rst" heuristic we apply DFS to the graph, and use the
DFS discovery order as our vertex order. To comply with the \most constrained �rst"
heuristic we order the roots of our DFS trees by invariant multiplicity.

0.2.3 Implementation of the match function

The match function implements the recursive backtracking, handling the four cases
described in x0.2



0.2. BACKTRACKING SEARCH 7 7



8

h Find a match for j and continue 8a i �
BGL FORALL ADJ T(f [i], v, G2, Graph2)

if (invariant2(v) == invariant1(j ) && in S[v] == false) f
f [j ] = v;
in S[v] = true;
num edges on k = 1;

int next k = std::max(dfs num k, std::max(dfs num[i], dfs num[j ]));
if (match(next(iter), next



http://www.boost.org/libs/graph/doc/EdgeListGraph.html
http://www.boost.org/libs/graph/doc/VertexListGraph.html
http://www.boost.org/libs/graph/doc/AdjacencyGraph.html
http://www.sgi.com/tech/stl/AdaptableUnaryFunction.html
http://www.boost.org/libs/property_map/ReadWritePropertyMap.html
http://www.boost.org/libs/property_map/ReadablePropertyMap.html


10



0.4. DATA STRUCTURE SETUP 11

hData members for the parameters 14di
hInternal data structures 15ai
friend struct compare multiplicity;
hInvariant multiplicity comparison functor 12bi
hDFS visitor to record vertex and edge order 13bi
hEdge comparison predicate 14bi

public:
hIsomorphism algorithm constructor 15bi
hTest isomorphism member function 11ai

private:
hMatch function 6ai

g;

The interesting parts of this class are the test isomorphism function and the
match function. We focus on those in in the following sections, and leave the other
parts of the class to the Appendix.

The test isomorphism



12

std::vector<invar2 value> invar2 array;
BGL FORALL

ar6.78[(>)]TJ/.55 9.963 Tf 27.8295.23(>)]TJ/push.963 Tf 55.53 0 Td[(invar2)]TJ
ET
93.361 059.652 0.398 re f
1 0 0 1 97.483 0 cmb
/F43ck9.963 Tf 0 0 Td[(ar2.33683 0 cm(55 9.963 Tf 27.8295.23ctor)]TJF43 9iant29.963 Tf 0 0 Td[(a53.1583 0 cm(55 9.963 Tf 27.8295.23tor)]TJv9.963 Tf 0 0 Td[(a[(v09tor)]TJ))F55 9.963 Tf 27.829 0 5.6510398 re613 cm
ort9.963 Tf 0 0 Td[(ar0.53483 0 cm(55 9.963 Tf 27.8295.23tor)]TJF43 9.963 Tf 1-540 T80398 re61L)]TJ
ET
-148.105 -11.955 5Td[260398 re61398 re f
1 0 0 1 75.336 0 cm
BT
/F43 9.963 Tf 0 0 Td[(arr)59(ay)]TJ/)F55 9.963 Tf 27.829 90.51;



0.4. DATA STRUCTURE SETUP 13

tree’s to be ordered by invariant multiplicity. Therefore we implement the outer-loop
of the DFS here and then call depth �rst visit to handle the recursive portion of the
DFS. The record dfs order adapts the DFS to record the ordering, storing the results
in in the dfs vertices and ordered edges arrays. We then create the dfs num array
which provides a mapping from vertex to DFS number.

h Order vertices and edges by DFS 13a



14

The �nal stage of the setup is to reorder the edges so that all edges belonging to
G1[k] appear before any edges not in G1[k], for k = 1; :::; n.



0.5. APPENDIX 15

std::size t max invariant;
IndexMap1 index map1;
IndexMap2 index map2;

h Internal data structures 15a i �
std::vector<vertex1 t> dfs vertices;
typedef std::vector<vertex1 t>::iterator vertex iter;
std::vector<int> dfs num vec;
typedef safe iterator property map<typename std::vector<int>::iterator, IndexMap1> DFSNumMap;
DFSNumMap dfs num;
std::vector<edge1 t> ordered edges;
typedef std::vector<edge1 t>::iterator edge iter;

std::vector<char> in S vec;
typedef safe iterator property map<typename std::vector<char>::iterator,

IndexMap2> InSMap;
InSMap in S;

int num edges on k;

h Isomorphism algorithm constructor 15b i �
isomorphism algo(const Graph1& G1, const Graph2& G2, IsoMapping f,

Invariant1 invariant1, Invariant2 invariant2, std::size



16

// and with no claim as to its suitability for any purpose.
#ifndef BOOST GRAPH ISOMORPHISM HPP
#de�ne BOOST GRAPH ISOMORPHISM HPP

#include <





18

g

// All defaults interface
template <typename Graph1, typename Graph2>



Bibliography

[1] N. Deo, J. M. Davis, and R. E. Lord. A new algorithm for digraph isomorphism.
BIT, 17:16{30, 1977.

[2] S. Fortin. Graph isomorphism problem. Technical Report 96-20, University of
Alberta, Edomonton, Alberta, Canada, 1996.

[3] E. M. Reingold, J. Nievergelt, and N. Deo. Combinatorial Algorithms: Theory
and Practice. Prentice Hall, 1977.

[4] E. Sussenguth. A graph theoretic algorithm for matching chemical structure. J.
Chem. Doc., 5:36{43, 1965.

[5]


	Introduction
	Backtracking Search
	Vertex Invariants
	Vertex Order
	Implementation of the match function

	Public Interface
	Data Structure Setup
	Ordering by DFS Discover Time

	Appendix

